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New methods of dynamically estimat- d ecsgrit:on;;fion
ing complex natural gas systems per-
formance can prove useful not only in ¢
design and operations, but also in plan-
ning for rehabilitation and expansion. Mainierarcs Failufe, repals

Algeria has a complex network of history —  (ates calculation
natural gas pipelines moving produc-
tion to national and international cus- |{
tomers. Its pipeline operators have
proposed an ambitious program of re- ¢ ¢ ¢
habilitation and expansion. The very Pisa s
high costs of such programs, due main- TC subsystem SC subsystem Sibsictan
ly to network complexity, required de-
velopment of tools to locate bottlenecks ¢ ¢ ¢
in advance and eliminate them as effi-
ciently as poss‘ible_ o Markov chain Klopt gfn tuls Availability

After selecting a framework defining model model
objectives, planners turned to develop-
ing a model that would allow them to | | |
quantify the impact of any decision on ¢
meeting these objectives. This article
applies the concept of performability'” Hydraulic
to this process. S ilaton
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TECHNOLOGY
EQUATIONS

For complex pipeline networks with numerous redun- 101 1
dancies, the failure of any single element does not cause a Peﬁ:'{]:l'rf Q (T)d'fl ='QD'M{0,} (1)

total stop in operations but a decline in performance charac- Perf = ok ‘Z PQ (2)
terized by reduced flow. Work continues, even in the pres- G&
ence of failures. This kind of system is degradable and fault- Where:
tolerant. Its correct modeling must integrate reliability and Q= nominal flow rate
f ; _ M(Q,)= expected value of variable Q,
performance in the same reference frame. P, ' = probability of failure state
Degradable systems’ operating assumptions include the Q, = flow rate associated with failure state
G S . : . 2 = total number of failure states
ability to remain in service at various levels of performance. o
At system start-up, all components are assumed to be opera- A= jl(—z utT 3)
tional and the system will operate at maximum performance. 1 . .
When a component fails, the system will reconfigure itself r= I'R'ZET[R.I
;e L (4)
and restart activities, albeit with degraded performance. The Where
long interval typical between failures means the system will TTR, = repair duration after failure i ;
operate mostly in steady state between successive reconfigu- k = topthriggmber of failures during the observation
rations and failures. 4P
)= AR () = kB () (8)
Background dP
Performability is the association of a reliability model with ar(t)=-(w+3A4)P,(t)+3AP (t)+ 2uP,(t) 6)
a performance model. The first task is defining the math- dP.
ty=-(2A+ 2P, (t)+ 3AP,(t)+ 3uP, (t
ematical nature of this association. ?F?( Ji= w5E) QTSR
‘ In a black box represep[atmn (l‘:ig_ 1) with the rated capac- =E(t)=-(A+3u)P,(t)+ 2AP, (1) + 4P (t) (8)
ity of the system, Q_, an input variable and an output variable dP
of real capacity, Q, the system process is subject to two distur- gr(t)=4uP (t)+ AP, (t) )
bance vectors: failure rates, \, and repair rates '.L Rated capacity Where:
is the transport capacity of the network in absence of failures. P(0) = 1and P, (0) =P, (0) =P, (0) =P,(0) =
Failure’s random nature leads to random fluctuations in flow P.=P(E1)+P(E,) (10)
rate over time, T (Equation 1). Statistical distribution can then P..=P(E3).P,=P(E,) (11)
model these fluctuations, or they can be assessed as random G
processes with discrete space-of-failure states (Equation 2). 4= (X ) (12)
_ Natutal gas pllpehnes generally €ncompass ComPpressor sta- POS =2
tions (CS) and pipe legs. A compressor station includes several By :{L O (13)
turbo-compressors (TC) installed, in most cases, on passive \évcr)]gire:; pipe leg operating state probability
redundancy. Algerian gas compressor stations are generally A, = pipe leg failure rate in h_'lll‘{m'1
configured with 3+1 TC installed in parallel on passive re- [t = g:gg :gg [gﬁgtlg ri?]ti;r? f
dundancy (Fig. 2).
GAS PIPELINE SYSTEM, HIERARCHICAL COMPOSITION 6.4
Systemic —
decomposition |__Gas pipeline I______________________________________________|-_e_“’?!_0_
A
Y Y Y
| TC subsystem | [ CS subsystem | Pipe legs Level 1
_.jr____ v ¥ \ A _*_". ¥ v N4 v v
v | | Tcz i[tcme] [cs1 |[cs2 | :| csn | [Pipeleg 1]|Pipeleg 1| |[Pipe leg n| Level 2
Bottom up
recomposition
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MARKOV DIAGRAM, SYSTEM STATE PROBABILITIES

FIG. 5
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Fig. 3 shows the general approach used for this article,
taking into account the following assumptions:

« Failure and repair rates are the same for all TC.

+ Failure and repair rates are the same for all CS.

+ Failure and repair rates, issued from databases, are
constant for all pipe legs.

* Repairs start immediately after failures.

Systemic approach
For complex pipeline systems, the main drawbacks regard-
ing Equation 2 are:
* The huge dimension of space, S.
« Difficulties related to defining probabilities for every state.
Complex pipeline systems therefore require a systemic
approach to bring space, S, to manageable dimensions*® by
splitting the global system into subsystems. Every subsystem

GK1-GK2 GAS PIPELINE SYSTEM

Cs1 Cs2

can similarly split into lower level subsystems. A subsystem
generally will be defined as an interacting collection of ele-
ments or lower level subsystems.

An element forms the basis of a subsystem that can't be
broken down into further sub-elements. A hierarchical flow
diagram having more or fewer high-level numbers depend-
ing on the degree of detail required from the modeling pro-
cess illustrates this breakdown. This article uses a three-lev-
el hierarchy to model pipeline reliability (Fig. 4).

A bottom-up approach reconstitutes the global model.
An element can be either operational or in a failure state.
An element in good operating condition can be in operation
or on standby. A combination of a subsystem’s constituent
elements might characterize its state. In the same manner,
combining immediately lower subsystem states can define a
high-level subsystem state.
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Reliability rates

The basic reliability indexes of com-
pression unit components are failure
rates, TC, CS A, and \__, and repair
rates, . and p_. The law of large
numbers (LLN) provides the basis for
the “frequentist approach™'® repre-
senting the classical identification of
reliability indexes.

Equation 3 estimates the rate of fail-
ure for UT, UT,,..., UT, as a sample of
the random variable representing the
up times of selected equipment. The
same logic applies to the repair rate
(Equation 4).

Failure modeling

A compressor station consists of n op-
erating and r standby TC. Each TC is
in either a good operating state (OS)
or failure state (FS). Different combi-
nations of these elements determine
finite set E, with C*_ dimension, for
all possible system states. A stochas-
tic modeling process using Markov
chain'™'? can evaluate probabilities of
different E states. Circles on the Mar-
kov model represent the component
states (working or failed), with arrows
showing the direction of transition be-
tween states (failure or repair). Arrows
with numeric values show failure or
repair rates.

System states are a combination of
different element states. A change in
the condition of any element starts sys-
tem transition from one state to anoth-
er. The homogeneous Markovian pro-
cess features constant transition rates
with the following assumptions:

+ Failure rates identical for m+r
TC.

+ Perfect standby element permu-
tation.

« Immediate spare part availabil-
ity.

* m+r repair teams.

Fig. 5 shows the 3+1 TC. Permuta-
tions include:

* E1:3+41 TCin OS.

* E2:3TCin OS, 1 TCin FS.

* E3:2TCin OS, 2 TCin FS.

* E4:1TCin OS, 3 TCin FS.

« E5:3+1 TCinFS
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CS SUBSYSTEM STATE PROBABILITIES

Table 1
A.=0,0025 #!, p. = 0,0417 '
CS state Probabhility CS state Probability
0CSinFS, g, | 0747268173 | AICSinOS 0747258173
1CSinFS, q | 0224177452 | CSiinFSgq, 004483549
2CSinFS, g, | 0026901294 | €S CSjinFS gy 0.002690129
3CSinFS, g; | 0001614078 | CS{CS[CSKinFS gy 0.000161408
ACSInFS,q, | 484223605 | CS/CSjCSKCS[inFS | 968447E-06
5C5inFS, g | 5.81068E-07 | AICSinFS 5.81068E-07
EVENT PROBABILITY MODELS Table 2

EVENTS

E, : all pipe legs in OS + all the CS in OS + at least
m TC of m+r in OS for all CS

PROBABILITY MODELS

P(E,)= (Hpos) P

E, : pipe legiin FS + all the CS in OS + at least
TC of m+rin OS for all CS

E, : all pipe legs in OS + all the CS in 0S + m-1
TC in0Sin CSi+ at least m TC of m+rin OS for
all other C3

; all pipe legs in OS5 + CSiin FS + at least mTC
01? m+r in 05 for all CS

E_‘IJ all pipe legsin0S+2CSiandjin FS + at
least m TC of m+rin OS for all C5

= N-land1_|+1 N,

E. : all pipe legs in OS + CSiin FS + m-1 TC
|an in C5j + at least m TC of m+r in OS for all
other CS

N
]

P(Eﬁ):(HPOSS)qh(P )P

i=1+N_etj=1+N

E. :all pipe legs in OS + all CSin OS + m-1 TC
in JOS in two different CS i and j + at least m TC of
m+r in OS5 for all other C5

P(E )=(ﬁms) a, (P, JP.

& 51
i=1+N-landj=i+1+N_

E,:allpipelegsin0S +allCSin0S +m-2TC in
08'in CS i + at least mm TC of m+r in OS for all
other CS

-3

P(Eﬁ)z(]_’[POSs)qo(PN)IP; i=1+N

E, :pipelegiin FS + CSjin FS + at least m TC of
m+r in OS for all CS

[1Pos,
(E) PF-"-}:US—qP
1_1,Nuand|-1,NG

pipe leg i in FS + all the CS in 0S + m-1 TC
|an5 in CS | + at least m TC of m+r in OS for all
other C5

pipe legsiand jin FS +all CSin OS + at
ét m TC of ms+r in OS for all CS

N
b

[1Pos, \
i i s L
'l=l-:-NP and j=1+N_

Mo

[lros,
P(Em) = PF.‘PF,'FﬁSI-PUS:qu 7

i=1+N“—1ar‘rdj—i+l-:—Nn

Where:

P = probability at least m TC of m+r in operating state in CS
P . = probability to have m-1 TC in operating state in CS

P_, = probability to have m-2 TC in operating state in CS

g, = probability of one CS in failure state

g, = probability of all CS in operating state

P?)S = pipe leg operating state probability

PF = pipe leg failure state probability

N = number of piéae legs

N., = number of C
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BASE-CASE GK1-GK2 PERFORMABILITY COMPUTATION

Table3d
@ Qs
million million
Pipeline failure state Probability cu m/hr Pipeline failure state Probability cu m/hr
All pipe legs in OS5 + all CS in OS + at least 3 TC 4.10E-01 30 éne leg 6 GK2 in FS+ all CS in OS + at least 3 2 96E-04 153

in 05 for all CS

in OS for all CS

All pipe legs in05+CS1inFS+atleast3TC
in OS for all CS 2.46E-02 27

All pipe legs in 05 + C51 & C52 in FS + at least
37TCin OS for all CS TR =

All pipe legs in 0S + CS 2 in FS + at least 3 TC

in OS for all CS 246E-02 | 253

All pipe legs in 0S + CS1 & CS3 in FS + at least
3TC in OS for all CS 148E-03 |25

All pipe legs in 0S +CS 3 in FS + at least 3 TC S
in OS for all CS 2.46E-02 | 264

All pipe legs in 05 + CS1 & CS54 in FS + at least

37TCin OS for all CS 1.48E-03 25

All pipe legs in 05 + CS 4in FS + at least 3 TC -
in OS for all CS 2.46E-02 26

All pipe legs in 0S + CS1 & CS5 in FS + at least
3TC in OS for all CS 148E-03 |24

All pipe legs in 0S + CS 5in FS + at least 3 TC
in OS for all CS 246E-02 | 249

All pipe legs in 05 + C52 & C53in FS + at least

3 TC in OS for all CS 1.48E-03 2

All épf legs in OS +all CSin 05 + 2 TC in OS 4.60E-02 595
in - .

All pipe legs in OS + CS2 & CS4 in FS + at least
37C in 0% for all CS 148E03 |25

All pipe legs in 0S5 +all CSin 0S5 + 2 TC in 08 4.60E-02 205
inCs2 ul :

All pipe legs in 0S + C52 & C35 in FS + at least

3TC in OS for all CS 1.48E-03 24

All ép:;e' legsin 0S +all CSin0S+2TC in 0S 4.60E-02 295
in ! :

All pipe legs in OS + CS3 & CS4 in FS + at least
37TCin OS for all CS 148E-03 |21

All pipe legs in0S +allCSin05+2TCin 08 4.60E-02 295
inCs4 | :

All pipe legs in 05 + C53 & CS5in FS + at least

37TC in OS for all CS 148E-03 |24

N'CDSiDae legs in 0S +all CS in 0S5 + 2 TC in 0S 460502 | 295
in : :

All pipe legs in 0S + C54 & CS5 in FS + at least
37C in 0S for all CS leae ol =

Pipe leg 1 GK1 in FS+ all CS in OS + at least 3
TC in OS for all CS 1.31E-04 22

All pipe legs in 0S + all C5in 05 + 2 TC in 0%

in CS1 & CS2 5.16E-03 293

Pipe leg 2 GK1 in FS+ all CS in OS + at least 3
TC in 08 for all CS LG R

All pipe legs in OS +all CS in OS + 2 TC in 0OS
in CS1 & CS3 5.16E-03 293

Pipe leg 3 GK1 in FS+ all CS in OS + at least 3

TC in OS for all CS 144E-04 | 215

Al pipe legs In S +all CS in 0S +2 TC in 0S In :
Sl & CSd 5.166-03 | 294

Pipe leg 4 GK1 in FS+ all CSin OS + at least 3
TC in OS for all CS 1.32E-04 22

All pipe legs in 05 +all C5in 0S + 2 TC in 08
in CS1 & CS5 5.16E-03 | 294

Pipe leg 5 GK1 in FS+ all CS in OS + at least 3

TC in OS for all CS 1.20E-04 2.2

All pipe legs in 0S + all CS in 0S +2 TC in 0S in .
CS2 & C53 5.16E-03 29

Pipe leg 6 GK1 in FS+ all C5in OS5 + at least 3
TC in OS for all CS 2.26E-04 1.74

All pipe legs in 05 + all C5in 05 +2 TC in 05 in |
C52 & C54 5.16E-03 293

Pipe leg 1 GK2 in FS+ all CS in OS + at least 3

TC in OS for all CS 1.31E-04 1.84

All pipe legs in OS +all CS in 0S +2 TC in OS in =
CS2 & CS5 5.16E-03 294

Pipe leg 2 GK2 in FS+ all CS in OS + at least 3
TC in OS for all CS 1.51E-04 | 1.77

All pipe legs in 0S + all CSin 0S + 2 TC in 08 .
in CS3 & Cs4 5.16E-03 2.88

Pipe leg 3 GK2 in FS+ all CS in OS + at least 3

TC in OS for all CS 144E-04 | 1.78

All pipe legs in 0S +all CSin OS + 2 TC in 0S o
in C53 & CS5 5.16E-03 29

Pipe leg 4 GK2 in FS+ all CS in 0S + at least 3
TC in OS for all CS 1.32E-04 1.8

All pipe legs in 0S + all C5in 0S + 2 TC in 0%
in CS4 & CS5 5.16E-03 2.86

Pipe leg 5 GK2 in FS+ all CSin 05 + at least 3

TC in OS for all CS 1.20E-04 1.86

Equations 5-9 comprise the state equations system asso-
ciated with this example.

Equation 10 shows the probability that at least 3 TC in the
CS are operating.

Equation 11 shows the probability of having 2 or 1 TC
operating.

Fig. 5 presents the solution obtained using the model de-
scribed, with TC in failure state shown in bold.

94

Gas pipeline performability without rehabilitation, 0.8934

Failure probability

Subsystem CS is considered separately from subsystem TC.
A CS failure does not mean failure of all TC. Even if all TC
of a CS are in good operating condition, however, the pos-
sibility of a compressor station breakdown remains. CS fail-
ures are usually due to secondary components, particularly
control chains and electrical supply equipment. Assuming
an identical reliability index A__and p__for all compressor

Oil & Cas Journal | Mar. 4, 2013
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RELIABILITY INDEXES Table 4
Post-rehabilitation
Basecase TC Cs Pipe leg
Are (0 1.67E-03 7.14E-04 1.67E-03 1.67E-03
e (0 8.33E-03 8.33E-03 8.33E-03 8.33E-03
Ass (B 2.50E-03 2.50E-03 1.25E-03 2.50E-03
ses (B 4.17E-02 4.17E-02 4.17E-02 4.17E-02
A (h' Km?1) | 8.00E-08 8.00E-08 8.00E-08 1.14E-08
 (hY) 2.08E-02 2.08E-02 2.08E-02 2.08E-02

GK1-GK2 POST-REHABILITATION PERFORMABILITY  taies

Expected throughput,
Rehabilitation strategy Performability  billion cu m/year
Without rehab 0.8934 22.514
Rehab of TC subsystems 0.9526 24.007
Rehab of CS subsystems 0.9216 23.224
Rehab of pipe legs subsystem | 0.8950 22.554
Rehab of TC subsystems + CS
sibsystams 0.9735 24.534
Rehab of TC subsystems +
pipe legs subsystem 0.9540 24.043
Rehab of CS subsystems +
pipe legs subsystem 0.9231 23.263
Rehab of TC subsystemns +
CS subsystems + pipe legs 0.9749 24.569
subsystem

stations, using the k-out-of-n rule, Equation 12 shows the
probability to get k CS out of service.*®

Table 1 presents an application of this model for the natu-
ral gas transmission pipeline linking Hassi R'mel to Skikda
with 5 CS.

Equation 13 determines the probability that a pipe leg is
in a good operating state (OS).

Reliability model

Gas pipelines of low or average length, such as the Alge-
rian pipelines, are unlikely to suffer a simultaneous failure
of more than two elements. Elementary probabilities thats
use fundamental theorems of probabilities theory calcu-
late the probability of each event. Table 2 shows statisti-
cally significant events and their corresponding probability
models. . .

Hydraulic simulation
Each failure state, E, has an associated flow rate, Q. Hy-
draulic relations describing the steady-state gas flow with-

96

in a pipeline combined with performance characteristics
of the TC can determine flow rate. Fig. 6 shows the results
of applying SIMONE gas pipeline simulation software to
this task.

The last column of Table 3 shows the results from ap-
plying SIMONE to a gas pipeline supplying the Skikda
LNG plant from Hassi R'mel field. Table 3 also shows the
most statistically significant results derived, during consid-
eration of 1-2 simultaneous failures on gas pipeline GK1/
GK2, out of 259 different combinations. The data reported
in Table 4 yield the results obtained for various rehabilita-
tion strategies shown in Table 5.
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